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This work aims to tackle the problem of
self-occlusion in single shot lidar
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Dataset Creation: DALES Viewpoints
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* Largest publicly available semantic segmentation data set for aerial LIDAR
* 40 tiles, spanning 10 km? with 50 ppm
 ~500 million expert-labeled points
* 8 unique object categories

* Ground, Vegetation, Poles. Fences, Power Lines, Trucks, Cars, Buildings, Unknown
* 4 distinct scene types

®  Rural, urban, suburban, commercial

go.udayton.edu/dales3d



https://go.udayton.edu/dales3d
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 Same tiles as DALES

* 40 total tiles A
e Split into chunks, 100,000 points each
* 4 viewpoint per chunk
* 500 meters from each edge
w
A
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23° off nadir 26.5° off nadir 30° off nadir
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Input: Desired Output:
Single Shot Scene Single Shot Scene w/ Occluded Points
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*Huang, Zitian, et al. "Pf-net: Point fractal network for 3d point cloud completion." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020.
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The majority of generative point cloud algorithms are proposed for small
synthetic datasets

* Aerial datasets are much larger
* Tens of millions of points instead of thousands

* Objects are scattered throughout the scene
* No one point of focus

We wish to propose a sampling network which can drastically reduce the
number of points, while also keeping key points
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* Implement a learned attention-based sampling technique
e Using MLP to reduce the number of points and manipulate the dimensionality

* Propose an attention mechanism to sample key points
* Improvement over iterative farthest point sampling techniques



University of Dayton

Sampling Method Comparison ViSIONLAB

Center of Excellence

Farthest Point Sampling Learned Sampling
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We use two distance measures in our metrics

* Chamfer’s: Non-bijective, fast
* Earth Mover’s: Bijective, slow
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Jensen-Shannon Divergence

KL(P:||M)+ KL(F,||M)
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Quantitative Results
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Sampling Method

Farthest Point

Learned Attentive

Sampling Method ICoverage I Coverage

CD EMD
Farthest Point 0.5077 0.3383
Learned Attentive | 0.3775 0.4969
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Jensen-Shannon
Divergence

0.2644

0.0919

Sampling Method l MMD l MMD

CD EMD
Farthest Point 0.0308 0.3488
Learned Attentive 0.0196 0.2216
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Viewpoint Transformation Results ViSIONLAB
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Actual Occluded Points Suggested Occluded Points
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Suggested Occluded Points

Actual Occluded Points
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* Attentive sampling is effective for our viewpoint transformation application.
* Learned sampling provides better distribution for scene based applications.

Future Work

* Need additional testing for using learned attentive sampling for other
applications.

* Segmentation, registration, classification, etc.



