

Viewpoint Transformation for Reducing Self Occlusion in Aerial Lidar

Nina Singer¹, Vijayan K. Asari¹, Theus Aspiras¹, Jonathan Schierl¹, Andy Stokes², Brett Keaffaber², Andre Van Rynbach², Kevin Decker³ and David Rabb²

University of Dayton, ² Air Force Research Labs, ³ Defense Engineering Corp

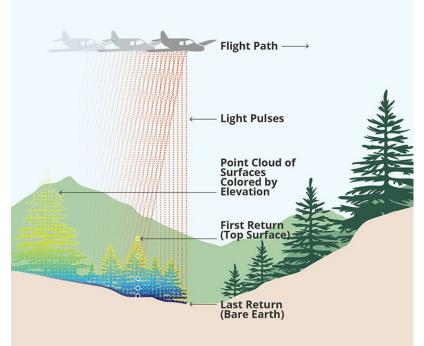
Objective

VCGI

This work aims to tackle the problem of self-occlusion in single shot lidar

Problem Statement

If we have an aerial lidar point cloud with an occlusion due to sensor position, can we create a network which will generate the missing points



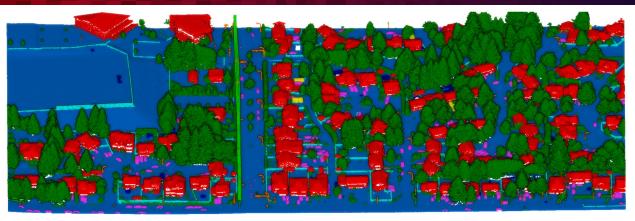
Occlusion Types



(a) View Occlusion(b) Self-occlusion(c) Ambient Occlusion

Dataset Creation: DALES Viewpoints

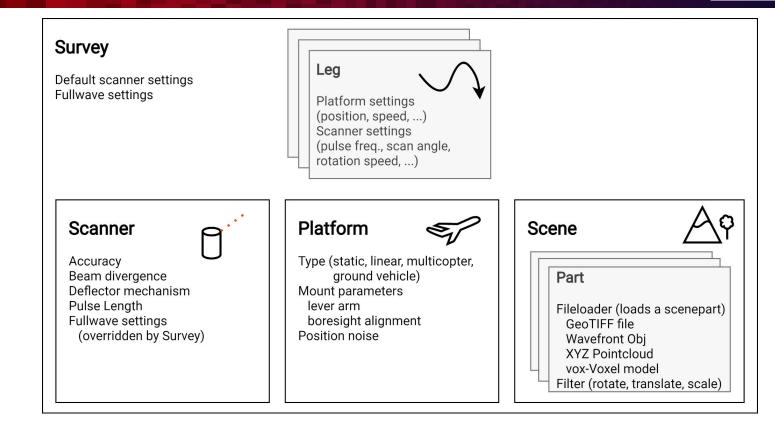
DALES: Dayton Annotated Laser Earth Scan



- Largest publicly available semantic segmentation data set for aerial LiDAR
 - 40 tiles, spanning 10 km^2 with 50 ppm
 - ~500 million expert-labeled points
 - 8 unique object categories
 - Ground, Vegetation, Poles. Fences, Power Lines, Trucks, Cars, Buildings, Unknown
 - 4 distinct scene types
 - Rural, urban, suburban, commercial

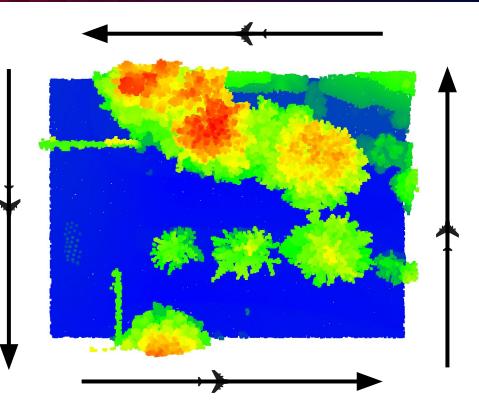
go.udayton.edu/dales3d

HELIOS ++ Overview



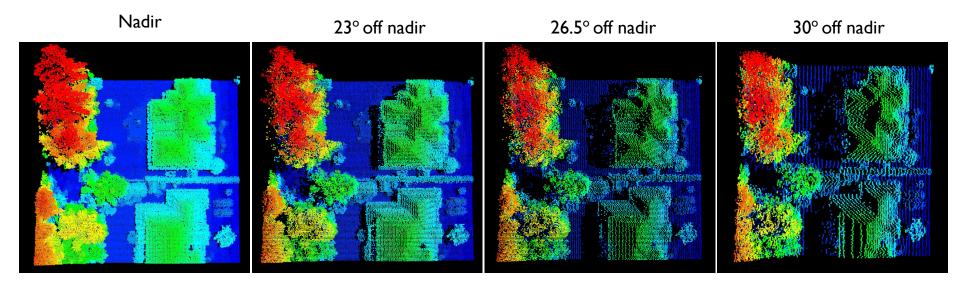
DALES Viewpoints

- Same tiles as DALES
 - 40 total tiles
 - Split into chunks, 100,000 points each
 - 4 viewpoint per chunk
 - 500 meters from each edge

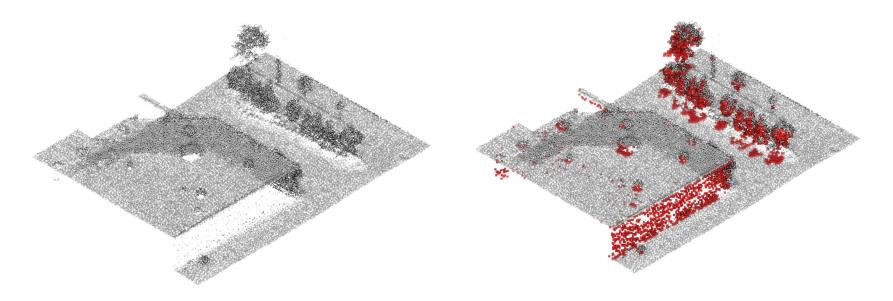


Helios ++: Creating Occlusions

University of Dayton VISIONLAB Center of Excellence



DALES Viewpoints Sample



Input: Single Shot Scene

Desired Output: Single Shot Scene w/ Occluded Points

University of Dayton

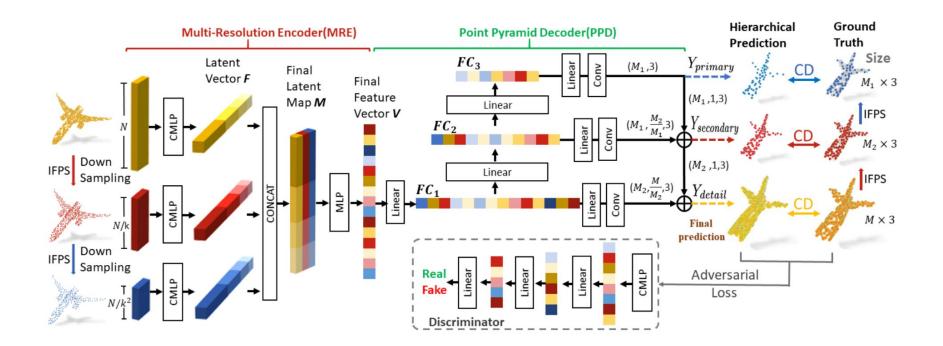
Architecture

Backbone Network: Point Fractal Network

University of Dayton

Center of

Excellence

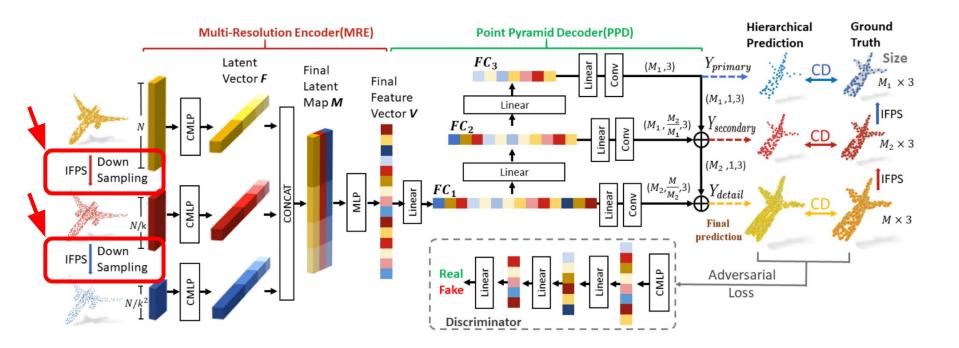


*Huang, Zitian, et al. "Pf-net: Point fractal network for 3d point cloud completion." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

Backbone Network: Point Fractal Network

University of Dayton

Center of Excellence



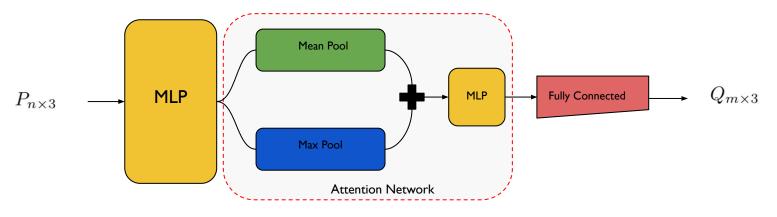
*Huang, Zitian, et al. "Pf-net: Point fractal network for 3d point cloud completion." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

The majority of generative point cloud algorithms are proposed for small synthetic datasets

- Aerial datasets are much larger
 - Tens of millions of points instead of thousands
 - Objects are scattered throughout the scene
 - No one point of focus

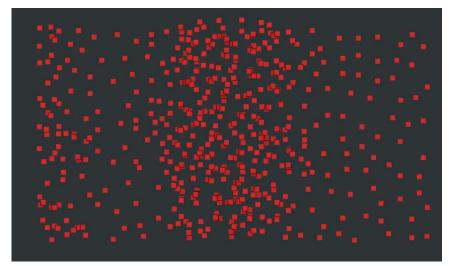
We wish to propose a sampling network which can drastically reduce the number of points, while also keeping key points

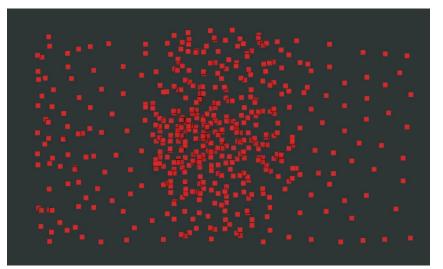
Learned Attentive Sampling



- Implement a learned attention-based sampling technique
 - Using MLP to reduce the number of points and manipulate the dimensionality
 - Propose an attention mechanism to sample key points
 - Improvement over iterative farthest point sampling techniques

Sampling Method Comparison

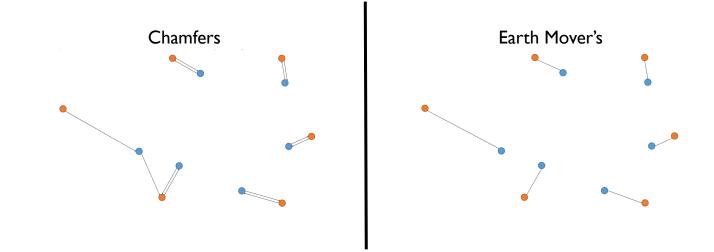




Farthest Point Sampling

Learned Sampling

Distance Metrics



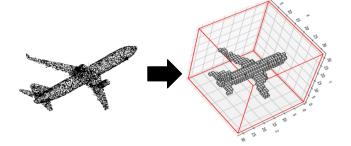
We use two distance measures in our metrics

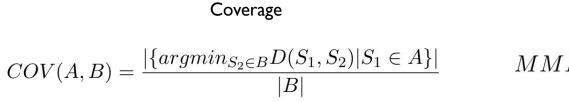
- Chamfer's: Non-bijective, fast
- Earth Mover's: Bijective, slow

Metrics

Jensen-Shannon Divergence

$$JSD(P_g||P_r) = \frac{KL(P_r||M) + KL(P_g||M)}{2}$$
$$M = \frac{P_r + P_g}{2}$$





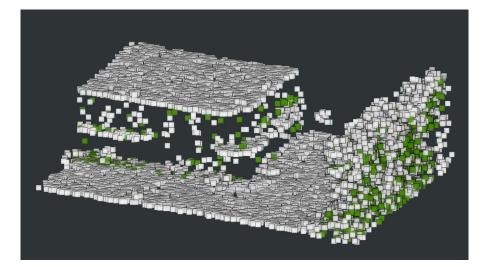
Minimum Matching Distance

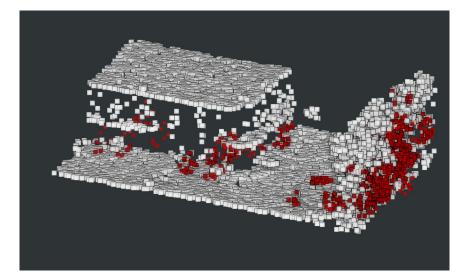
$$MMD(A, B) = \frac{1}{|B|} \sum_{S_2 \in B} \min_{S_1 \in A} D(S_1, S_2)$$

Sampling Method	Jensen-Shannon Divergence	
Farthest Point	0.2644	
Learned Attentive	0.0919	

Sampling Method	Coverage	Coverage EMD	Sampling Method	↓ MMD ↓ CD	↓ MMD ↓ EMD
Farthest Point	0.5077	0.3383	Farthest Point	0.0308	0.3488
Learned Attentive	0.3775	0.4969	Learned Attentive	0.0196	0.2216

Viewpoint Transformation Results

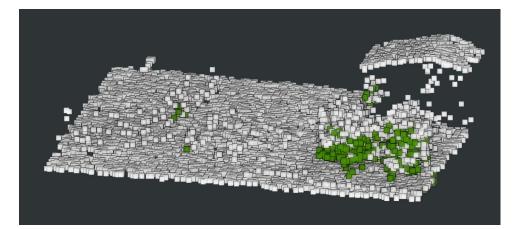


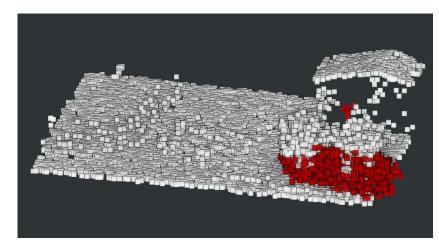


Actual Occluded Points

Suggested Occluded Points

Viewpoint Transformation Results





Actual Occluded Points

Suggested Occluded Points

- Attentive sampling is effective for our viewpoint transformation application.
- Learned sampling provides better distribution for scene based applications.

Future Work

- Need additional testing for using learned attentive sampling for other applications.
 - Segmentation, registration, classification, etc.