
US Army Corps of Engineers  • Engineer Research and Development Center

UNCLASSIFIED

UNCLASSIFIED
DISCOVER  |  DEVELOP  |  DELIVER

 Prepared by David B. Ober
Geospatial Applications Branch, Geospatial Research Lab

 For P3DL 
 Date: August 4, 2021

Rigorous propagation and convolution of 
physically-based error sources for LiDAR sensors

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited



US Army Corps of Engineers  • Engineer Research and Development Center

UNCLASSIFIED

UNCLASSIFIED

2/24

Overview

Problem
 Introduction
LiDAR Hardware Model
LiDAR Error Sources
Results
Conclusion



US Army Corps of Engineers  • Engineer Research and Development Center

UNCLASSIFIED

UNCLASSIFIED

3/24

Problem: How do we discover physical sources of mechanical and 
optical aberrations, misalignments, and measurement timing errors 
on 3D point clouds constructed from LiDAR measurement data?
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Calibration of high altitude LiDAR sensors can be challenging and 
expensive

HALOE

https://www.darpa.mil/about-us/timeline/lidar http://www.sigmaspace.com/blog-post/sigmas-hrqls-lidar-highlighted-laser-focus-world-
top-product-2014

System-driven calibration
Non-physical empirical models

Data-driven calibration 

Initially constructed point clouds have distortions/biases 

System-driven calibration
Non-physical empirical models

New calibrations applied post-deployment
Expensive/time-consuming studies to develop empirical models

Data-driven calibration remains expensive/time-consuming
Neither system has fully identified physical sources of distortion/bias errors

HRQLS
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System compensation parameters for LiDAR scan angle 
errors may not directly relate to physical errors

T. Schenk, "Modelling and analyzing systematic errors in airborne laser scanners," Technical Notes in Photogrammetry, vol. 19, 2001.

βC(t) = βM(t) Sβ

αC(t) = αM(t) Sα

M: measured
C: compensated
Sβ,Sα : Scan angle scale factors

Uncompensated total scanner angle range τ
Compensated total scanner angle range τ*
Scale of total angle error        is 
scaled linearly with distance from
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Genesis for the research – trying to identify the Risley 
Prisms world orientation (and surprise correction found)
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1. Create 10x10 unit direction 
vectors in World CS

2. Transform rays to Laser Unit CS 

All 100 rays are 
contained within the 
thickness of this line

3. Transform 
rays to Laser 

Beam CS
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Ray tracing can be used to determine readhead/encoder 
measurements and application of Snell’s law (prisms)
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Proposed transformation origins, orientations, and 
child/parent links between different hardware components

13 of 15 child/parent transformation links are gimbal based
Rotation Axes A & B transformations propagate to position/orientation of encoders and optics
Ray tracing convolves all errors into angle measurements and laser/detector line-of-site
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Additional reference frames defined by laser light as it 
interacts with optical elements (using Snell’s law)
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The hardware error sources that we account for in model

Rotation Axis: bearing runout -> radial & axial runout
Encoder: eccentricity, swash, line scale errors
Readhead: clock timing bias, parallax 
Optics: n1,n2 index of refraction, wedge angle
Laser/Detector: clock timing bias
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All components can have misalignments in position and 
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Simulated misalignments and effect (using Snell’s law)
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Simulated misalignments on readhead/encoder angles
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Static visualization of Risley Prism in operation 
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Looking at simulated data in other fixed frames
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Fixed Reference Frame: LaserPrismB, ID: 1.1.2.2, Proj: Ortho

Pattern extracted from collected data Pattern created from HW Model

Simulated data is from “perfectly aligned prisms”

Comparison of genesis data vs. simulated sensor data
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Perfect Alignment Non-Perfect Alignment

With optical and mechanical misalignments

Comparison of aligned and misaligned data
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• Streamline trade-studies and critical investment decisions across the entire imaging 
sensor acquisition lifecycle including Analysis of Alternatives, CONOPS, HW & 
Sensor Model design, and sensor fusion 

• Perform comprehensive and rigorous virtual studies on the complex interactions 
and dependencies between HW design and component specifications, sensor 
model compensation parameterizations, and sensor calibration 

• Provide unprecedented insight into error propagation enabling new research into 
techniques and approaches to improve and/or automate calibration

• Verify numerically and graphically the illumination (or IFOV) of sensor coverage for 
a given sensor mission, HW operational settings, and 3D target geometries

• Visually validate “HW Model” component selection and assembly
• Evaluate new signal processing and conditioning algorithms

We can model physical aberrations and misalignments of 
mechanical and optical components and measurement 
timing errors on LiDAR measurement data

Other benefits for new models
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