

The New Hybrid Product Approach: Aligning Project Specifications with UAS Photogrammetry & Lidar

Dr. Qassim Abdullah

VP & Chief Scientist, Woolpert

Adjunct Professor at Penn State and UMBC

P3DL 2021 (Photogrammetry, 3D Visualization, and Lidar CoP Conference) August 9-12, 2021

Agenda

- 1. The state of Lidar technologies
- 2. The state of digital imagery
- 3. The hybrid approach to 3D data generation
 - Step-by-step to the hybrid approach
 - Proof of concept for PennDOT for section 35 of SR80
 - 4. Concluding remarks and discussions

The state of Lidar technologies

A word about the state of Lidar

- Manufacturers continue their innovations
- Lidar market is still strong with high demand for higher density and better quality lidar data
- Lidar becomes an integral part of roads planning, design, and construction activities
- UAS-based Lidar has a unique niche in the market

The state of Digital Imagery

New Generation of Digital Cameras bring giant Capabilities

Now come the drones

SwellPro Spash Drone

DJI Inspire

25,728 pixels

Sensfly eBee X RTK

What can you get from UAS-based consumer grade cameras?

The lesson learned about Geospatial data acquisition technologies..

- Every data acquisition technology has its own weakness and so as strength
- Building on the strength of each technology opens new opportunities when different technologies are used together

The by-product from different technologies is.... The Hybrid Digital Terrain Model

What is the hybrid DTM?

- Is a new product derived from multiple DTM acquisition technologies
- It is a product that was planned and budgeted during the project phase,
 i.e., not as after thought
- It is a product with defined quality and positional accuracy
- It is a product that <u>meets</u> the project specifications and <u>saves</u> time and money

The Hybrid DTM utilizes the best of all worlds:

Aerial Lidar + MMS + UAS

Aerial Lidar:

Points Density: up to 30 pts/m²

Accuracy(v) RMSE = 6 to 15 cm

MMS:

Points Density: 2,000 to 6,000 pts/m²

Accuracy(v) RMSE = 1.5 cm

UAS:

Points Density: 40 to 1000 pts/m²

Accuracy(v) RMSE = 5 to 15 cm

Project zones and their requirements

- Zone A: Central Region of the Right- of-Way
 - highest accuracy level
- Zone B: Edges of the ROW
 - Medium accuracy level
- Zone C: Extended Project Basin
 - Lowest accuracy level

Step I- Accuracy Verification

Aerial Lidar: Existing Statewide Lidar

Land-based Lidar: The MMS Data

Accuracy Validation

Number of Check Points	79)
Mean Error	0.023 ft.	0.007 cm
Standard Deviation (StDEV)	0.037 ft.	0.011 cm
Root Mean Squares Error		0.013 cm
(RMSEz)		
NSSDA Vert Accuracy at 95%	וו מאווו	0.026 cm
Confidence Level	0.00011.	0.020 0111

	。		ë.		
	Number of Check	197			
	Points				
The state of	Mean Error	0.47 ft	14 39 cm		
	Standard Deviation (StDEV)	0.16 ft.	4.90 cm		
	Root Mean Squares Error (RMSEz)		15.19 cm		
	NSSDA Vert Accuracy at 95% Confidence Level	I II UX II	29.79 cm		

Photogrammetric: UAS Data

Number of Check Points	73		
Mean Error	0.085 ft.	0.026 cm	
Standard Deviation (StDEV)	0.130 ft.	0.040 cm	
Root Mean Squares Error (RMSEz)	0.154 ft.	0.047 cm	
NSSDA Vert Accuracy at 95% Confidence Level		0.092 cm	

Data needs to be prepared for data fusion:

- Data reformatting necessary
- Reprojection if necessary
- Clipping and cropping

Clipping good data

Preparing the Three Datasets

Merging the Three Datasets

Hybrid Approach to Project Data

Outcome: Accuracy on Demand

The Results

- Hybrid DSM that is more affordable and more suitable for site planning and project design
- Data Fusion provides accuracy where you need it most!

Type C - Statewide LiDAR programs Type C - Statewi
Hybrid Product Accuracy**

Product Specification	Hybrid Product Accuracy**					
Product specification	Type A	Type B	Type C			
Terrain surface accuracy as verified	DN/ISE < 0.06 ft	DMSE < 0.10 ft	RMSE _v ≤ 0.50 ft.			
using independent check points	KIVI3L _V ≤ 0.00 It.	KIVI3L _V ≤ 0.101t.	$KIVI3L_V \leq 0.30 \text{ ft.}$			

^{**} Type A = MMS lidar , Type B = UAS imagery-based points cloud, Type C = State wide lidar program

Project 2: Mapping Products Generation from UAS: Proof of Concept for PennDOT

BACKGROUND

Woolpert acquired and delivered Mobile Mapping Lidar System (MMS) data and 3" natural colors imagery for PennDOT SR 081-360

OBJECTIVES

Woolpert pursued a proof-of-concept study to investigate the feasibility of using Unmanned Aircraft System (UAS) for the following PennDOT activities:

- Whether stereo compiled DTM from UAS can augment or replace the need for MMS to model edge-to-edge pavement modeling
- To evaluate the quality and suitability of the high resolution ortho-rectified imagery and points cloud generated from UAS within and outside ROW for other roads planning and design activities by PennDOT

Project Design and Mission Planning

eBee X Fixed-Wing Drone

senseFly S.O.D.A. 3D Mapping Camera

Collected imagery with 2.53-cm GSD (1")

Products Generated

Stereo Compiled Break lines

Digital Surface Model

Ortho-rectified Mosaic GSD = 2.5 cm (1")

UAS Imagery
Quality

GSD = 1'' (2.54-cm)

Imagery Quality: UAS versus Manned

Points Cloud Quality

S

UAS Contours Quality

UAS & MMS

Red: UAS Blue: MMS

MMS: Mobile Mapping System

Contours from UAS & MMS

Contours Quality Vertical Accuracy

Contours from UAS

Green: UAS Blue: MMS

₩

Comparing UAS DTM to Mobile Lidar using 28 Locations

							As a second		
	PennDOT L	JAS Proof of C	Concept - Ad	ccuracy Analysis ((Comparing UAS DTM to M	MS DTM)	U 4	13 - 21125 90	
			UAS Elevation	Residual Values (ft.)	Delta Z after Z-I	bias	201 12 - Z-1125-23		
- טווונוט	Easting (ft.)	Northing (ft.)	Elevation (ft.)	Elevation (ft.)	Error in Elevation (ft.)	Removed (ft.	.)	and the second	
CP_1	2447813.6658	320999.2773	1091.2600	1091.0900	0.1700	-0.0539		QP-11 -2:1124:19.	
CP_2	2447783.7307	321113.7985	1095.1700	1094.9800	0.1900	-0.0339	- 6	27-190 COLUMN 180	
CP_3	2447759.1650	321215.2972	1098.4000	1098.1600	0.2400	0.0161			
CP_4	2447733.0793	321308.6243	1101.5000	1101.2200	0.2800	0.0561		CP 10 - Z+120.05	
CP_5	2447700.7566	321419.0448	1105.1900	1104.8700	0.3200	0.0961		_CP_18 - Z3124.07	
CP_6	2447674.8168	321511.8570	1108.2900	1107.9800	0.3100	0.0861		EP 6-21417.04	
CP_7	2447653.6632	321604.4581	1111.2300	1110.8400	0.3900	0.1661		CF 20 - Z-1120.45	
CP_8	2447626.2922	321705.3985	1114.6300	1114.3200	0.3100	0.0861		EP 8-21114.00	
CP_9	2447596.3534	321793.1424	1117.7100	1117.3800	0.3300	0.1061		CP_21 - Z1117.31	
CP_10	2447571.4603	321890.3933	1120.9300	1120.8700	0.0600	-0.1639		CP 7 - Z1110.45 PP_22 - Z1110.64	
CP_11	2447546.6611	321995.9759	1124.4200	1124.2700	0.1500	-0.0739			
CP_12	2447526.5566	322083.3588	1127.2400	1126.9900	0.2500	0.0261		**	
CP_13	2447500.2614	322166.6011 322281.2289	1130.1800 1134.0600	1129.9000 1133.8900	0.2800 0.1700	0.0561 -0.0539			
CP_14 CP_15	2447466.4229 2447308.6649	322281.2289	1134.0600	1133.8900	0.1700	-0.0539		CP-23 - Z:1109:80	
CP_15	2447344.7171	322248.3213	1138.2900	1134.3400	0.1900	-0.0239		FP-8-21104.92	
CP_10	2447365.3790	322069.0943	1131.7300	1131.6100	0.1200	-0.1039		ge 34 -211108.88	
CP 18	2447303.5770	321961.4341	1127.9300	1127.8300	0.1000	-0.1239		gr 4 -21(01/20)	
CP 19	2447432.4695	321852.6548	1124.1800	1124.1000	0.0800	-0.1439		gP 28 -2.1100.28	
CP_20									
CP_21					Number of Chec	k Points	28	28	
CP_22 CP_23					Mean Error				
CP_24						0.002			
CP_25					Standard Deviation	(StDEV)	0.083	0.083	
CP_26		Root Mean Squares Error (RMSE _{x or y or z})		0.220	0.001				
CP_27	· <u>_=</u> -				quales Elloi (Kivis	x or y or z	0.238	0.081	
CP_28	_		NSSI	DA Vert Acc	uracy at 95% accura	cv Level	0.467		
	NSSDA \	/ert Accui			Level after z-bias		0.159		
			•	Error (RMSE _{x or y or z})	0.238	0.081	0.200		
				t 95% accuracy Level	0.238	0.061			
	NICCDA VI			after z-bias removal	0.159				

\$4 al-21100.08

UAS DTM Accuracy verified by PennDOT Field Survey

PennDOT UAS Proof of Concept - Accuracy Analysis (Comparing UAS DTM to PennDOT r	new check points	
Note: Flougition of shock points were represented to Coold 12D to match the vertical datum of the date		

	ivote. Lievat	ion of check points									
Point ID		Surveyed Elevation			UAS Elevation Residual Values		Residual Values (f	t.)	Delta Z aft		s of
		Easting (ft.)	Northing (ft.)	Elevation (ft.)	Elevation	on (ft.)	Error in Elevation (ft.)		Remov	Bias of	
	CP_1	2447833.0894	321000.2444	1090.7890	1090.	6120	0.1770		-0.0	0.19	9 ft.
	CP_2	2447802.1717	321113.8212	1094.5240	1094.	3850	0.1390		-0.05		
	CP_3	2447772.2693	321223.4371	1098.1050	1097.	9650	0.1400		-06	_	
	CP_4	2447748.5271	321310.1031	1100.9470	1100.	8140	0.1330		کەر		
	CP_5	2447717.8919	321422.8742	1104.6990	1104.	4980	0.2010		.0024		
	CP_6	2447692.8522	321515.1178	1107.7650	1107.	5460	0.2190		0.0204		
_	<u>CP_7</u>	<u>2447667,4935</u>	32 <u>1607.4306</u>	1110 <u>.8140</u>	1110.		0.1550	_4	<u>-0.0436</u>		
00.0 2447/20.050/ 201700.4050 1114.1070		1114	0/10	0.13/0		20/2/		R			
Number of Check Points							28		28		
Trainion of official office										_	U
Moon Error							0.100		0.000		21

			Me	an Error		0.199		0.000	
		Standar	d Deviation		0.096		0.096		
	Root	t Mean Squares	Error (RMSE		0.220		0.095		
	NSSDA V	Vert Accuracy a	t 95% accura		0.431		-0.2386 0.0814		
ISSDA Vert	Accuracy at 95%	accuracy Level	after z-bias ı		0.185		0.1714 0.0804 -0.0296		
CP_24	2447552.5875	321369.0845	1106.8410	1106	.5450	0.2960		0.0974	
CP_25	2447581.7572	321268.5857	1103.2270	1102	2.8890	0.3380		0.1394	
CP_26	2447606.8815	321181.3414	1100.1830	1099	9.9710	0.2120		0.0134	
CP_27	2447634.7895	321084.3153	1096.7430	1096	.5550	0.1880		-0.0106	
CP_28	2447667.2819	320972.5669	1092.7720	1092	2.3410	0.4310		0.2324	
			Nun	nber of Ch	eck Points	28		28	
				∕lean Error	0.199		0.000		
			Standar	d Deviatio	on (StDEV)	0.096		0.096	

0.220

0.431

0.185

0.095

Root Mean Squares Error (RMSE_{x or y or z})

NSSDA Vert Accuracy at 95% accuracy Level

NSSDA Vert Accuracy at 95% accuracy Level after z-bias removal

RMSEz = 0.095 ft. after bias removal

Concluding Remarks

- Imagery with resolution of 1" collected by UAS matched or exceeded the positional accuracy of imagery collected by manned aircraft with resolution of 3"
- The quality and details of the imagery collected by UAS exceeded the quality and details of the imagery collected by manned aircraft
- Stereo-compiled DTM from UAS imagery can augment or replace the DTM collected from MMS
- The DSM from UAS points cloud outside the ROW can be used for road planning and design purposes. It can replace some field surveying activities
- Products from UAS can be integrated with data from MMS and manned aircraft to generate a hybrid product that is more economically feasible.

Thank you!

Qassim Abdullah

<u>Abdullah@woolpert.com</u>
<u>Abdullah@umbc.edu</u>
<u>qaa3@psu.edu</u>
<u>Mapping matters@asprs.org</u>

